

Modification of Vector Mesons in Nuclear Matter measured in 12 GeV p+A reactions at KEK-PS

```
K. OZOWQ<sup>a</sup>),
J. Chiba<sup>b</sup>), H. En'yo<sup>a</sup>), H. Funahashi<sup>a</sup>), H. Hamagaki<sup>a</sup>),
M. Ieiri<sup>b</sup>), M. Ishino<sup>a</sup>), H. Kanda<sup>a</sup>), M. Kitaguchi<sup>a</sup>),
S. Mihara<sup>a</sup>), T. Miyashita<sup>a</sup>), T. Murakami<sup>a</sup>), R. Muto<sup>a</sup>),
M. Naruki<sup>a</sup>), M. Nomachi<sup>b</sup>), F. Sakuma<sup>a</sup>), O. Sasaki<sup>b</sup>),
H.D. Satoh<sup>a</sup>), M. Sekimoto<sup>b</sup>), T. Tabaru<sup>a</sup>), K.H. Tanaka<sup>b</sup>),
S. Yamada<sup>a</sup>), S. Yokkaichi<sup>a</sup>), and Y. Yoshimura<sup>a</sup>)
```

a Kyoto Univ., b KEK , c CNS, Univ.of Tokyo

- ① Physics motivation / experimental signals
- E325 experiment (characteristics, setup, detectors)
- ③ Status / Data ($\rho/\omega \rightarrow e^+e^-$ ('98) / $\phi \rightarrow K^+K^-$ ('99))
- 4 Summary... I show only the same statistics...

ozawa@cns.s.u-tokyo.ac.jp

Chiral symmetry restoration in dense matter

- In free space
 - →Spontaneous breaking of chiral symmetry
- In dense matter
 - → Partial chiral symmetry restoration
 - → Hadron modification is expected

Expected experimental signals

Invariant mass spectra

- In ρ / ω meson case, we calculated for finite size nuclei.
- → The mass shifts can be seen clearly. Target nuclear size dependence should be observed.

- Branching ratio $(N_{\phi \to K}^{+}_{K}^{-}/N_{\phi \to e}^{+}_{e}^{-})$
 - →Small Q value (32 MeV) of $\phi \rightarrow K^+K^-$
 - → Sensitive to possible mass shift of ϕ and K

KEK PS E325 experiment

- 12 GeV p + (CH₂, C, Cu) \rightarrow ρ , ω , ϕ + X
- Measure e⁺e⁻ pairs and K⁺K⁻ pairs
 - →Invariant mass spectra (e+e-)
 - → Branching ratio N_{KK}/N_{ee}
 - → Compare heavy and light nuclei cases
- Key points of spectrometer design
 - → Large acceptance spectrometer to detect slow mesons
 - → Larger matter effect is expected.
 - →Clean high intensity beam (~ 109 ppp) on thin target
 - →To suppress background in e⁺e⁻ channel

E325 spectrometer setup

The details are shown in the poster P088 by M. Naruki.

Quark Matter 2001

K. Ozawa, CNS. Univ. of Tokyo

Targets

- We placed three targets in-line along the beam direction.
- Total interaction length →0.2 %
- Total radiation length → 0.5 %
- To minimize the position dependence of the acceptance, the target holder was rotated by 180 degrees in every 12 hours.

Electron efficiency and pion contamination

 We evaluated the electron efficiency 2 and pion contamination in the momentum range greater than 400 MeV/c.

Counter name	e eff.	π rejection
FrontGC	55%	
Rear GC	86%	6.7×10^{-4} with FrontGC
EM cal	85%	3.9×10^{-4} with FrontGC

- The remaining eπ pair background was estimated to be about 13% in the final e+e- pair sample.
- The contaminations like ππ pair to be negligibly small.

Mass resolution and energy scale

 ΔM (measured) = $1.8 MeV/c^2$ ΔM (M.C.calc.) = $1.9 MeV/c^2$

 ΔM (measured) $= 3.6 MeV/c^2$ ΔM (M.C.calc.) $= 3.5 MeV/c^2$

Consistent

$$\omega \to e^+e^ \Delta \rm M$$
 (M.C.calc.) = 9.6MeV/c² $\phi \to K^+K^ \Delta \rm M$ (M.C.calc.) = 2.4MeV/c²

The energy scale uncertainty was estimated to be less than 1%.

Experimental status

- Preparation start: May 1994
- First physics Run: Jun. 1997
 - →100M events (kaon trigger)
- Second physics Run: May 1998
 - → 100M events (electron trigger) ⇒ Present Data
- Third physics Run: Jul. 1999
 - → 75M events (kaon trigger) ⇒ Present Data
 - → 64M events (electron trigger)
- Fourth physics Run: Jun. and Dec. 2000
 - 95M events (kaon trigger)
 - → 85M events (electron trigger)

Invariant mass distribution of electron pair

 20.0 ± 4.8

 5.2 ± 2.7

- $N_{\odot} = 75.5 \pm 9.0$
- $N_{\phi} = 7.4 \pm 5.8$
- $N_{\text{excess}} = 19.6 \pm 11.7$
- $N_{\text{excess}} / N_{\omega} = 0.26 \pm 0.16$ 1.48 ± 0.56

Quark Matter 2001 K. Ozawa, CNS. Univ. of Tokyo

 29.5 ± 8.7

The fit with 4 parameters: N_o N_o N_n N_{combinatorial}

We assumed σ_o equal to σ_m .

Combinatorial B.G. was obtained by the event mixing.

 $N_{\eta \to \epsilon \epsilon \gamma}$ turned out to be negligible.

Invariant mass distribution of kaon pair

The fit with 2 parameters: N_o N_{a/f}

The background due to the miss ID was estimated by the PID analysis.

Mass number dependence of the ϕ production

 $\sigma(A)/\sigma(carbon)$

 $\alpha = 1.01 \pm 0.09$

Pb

Cu

- In the φ → K⁺K⁻ channel
 - → From the data, $\alpha = 1.01 \pm 0.09$.
 - → From Monte Carlo (JAM), $\alpha = 1.08 \pm 0.01$.

$$\sigma(A) = A^{\alpha} \bullet \sigma(1)$$

Kinematical distribution.

Summary

- The present experiment, KEK-PS E325, addresses an important question on the QCD vacuum and the chiral symmetry at finite density.
- We have measured vector meson decays, φ,ω,ρ → e⁺e⁻ and φ → K⁺K⁻, in 12 GeV p+A reactions.
- In the e⁺e⁻ spectra, a significant shape difference was observed between the light and the heavy nuclear target. (nucl-ex 0011013)
- The K+K⁻ spectra were well described with φ → KK, a₀/f₀
 → KK and non-resonant KK pairs.

 (M. Jahina, Dh.D. Thasia, Kusta University)
 - (M. Ishino, Ph.D. Thesis, Kyoto University)
- The data taken in 1999 and 2000 is in the analysis process. Statistics will be improved.